Magnetic optimization in a multicellular magnetotactic organism.

نویسندگان

  • Michael Winklhofer
  • Leida G Abraçado
  • Alfonso F Davila
  • Carolina N Keim
  • Henrique G P Lins de Barros
چکیده

Unicellular magnetotactic prokaryotes, which typically carry a natural remanent magnetic moment equal to the saturation magnetic moment, are the prime example of magnetically optimized organisms. We here report magnetic measurements on a multicellular magnetotactic prokaryote (MMP) consisting of 17 undifferentiated cells (mean from 148 MMPs) with chains of ferrimagnetic particles in each cell. To test if the chain polarities of each cell contribute coherently to the total magnetic moment of the MMP, we used a highly sensitive magnetization measurement technique (1 fAm(2)) that enabled us to determine the degree of magnetic optimization (DMO) of individual MMPs in vivo. We obtained DMO values consistently above 80%. Numerical modeling shows that the probability of reaching a DMO > 80% would be as low as 0.017 for 17 randomly oriented magnetic dipoles. We simulated different scenarios to test whether high DMOs are attainable by aggregation or self-organization of individual magnetic cells. None of the scenarios investigated is likely to yield consistently high DMOs in each generation of MMPs. The observed high DMO values require strong Darwinian selection and a sophisticated reproduction mechanism. We suggest a multicellular life cycle as the most plausible scenario for transmitting the high DMO from one generation to the next.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell organization and ultrastructure of a magnetotactic multicellular organism.

Magnetotactic multicellular aggregates and many-celled magnetotactic prokaryotes have been described as spherical organisms composed of several Gram-negative bacteria capable to align themselves along magnetic fields and swim as a unit. Here we describe a similar organism collected in a large hypersaline lagoon in Brazil. Ultrathin sections and freeze fracture replicas showed that the cells are...

متن کامل

'Candidatus Magnetoglobus multicellularis', a multicellular, magnetotactic prokaryote from a hypersaline environment.

Phylogenetic analysis and phenotypic characterization were used to assign a multicellular magnetotactic prokaryote the name 'Candidatus Magnetoglobus multicellularis'. 'Candidatus Magnetoglobus multicellularis' lives in a large hypersaline coastal lagoon from Brazil and has properties that are unique among prokaryotes. It consists of a compact assembly or aggregate of flagellated bacterial cell...

متن کامل

A Preliminary Report on the Isolation and Identification of Magnetotactic bacteria from Iran Environment

Several species of Magnetotactic bacteria have been discovered recently. These bacteria synthesize intracellular magnetic nanoparticles in specific sizes and shapes and arrange them in chains. These particles called magnetosomes and can be used for drug-delivery, cell-targeting and hyperthermia. Magnetotactic bacteria navigate along the magnetic field; this process is known as ‘magnetotaxis’ wh...

متن کامل

Nonmagnetotactic multicellular prokaryotes from low-saline, nonmarine aquatic environments and their unusual negative phototactic behavior.

Magnetotactic multicellular prokaryotes (MMPs) are unique magnetotactic bacteria of the Deltaproteobacteria class and the first found to biomineralize the magnetic mineral greigite (Fe(3)S(4)). Thus far they have been reported only from marine habitats. We questioned whether MMPs exist in low-saline, nonmarine environments. MMPs were observed in samples from shallow springs in the Great Boiling...

متن کامل

North-Seeking Magnetotactic Gammaproteobacteria in the Southern Hemisphere.

UNLABELLED Magnetotactic bacteria (MTB) comprise a phylogenetically diverse group of prokaryotes capable of orienting and navigating along magnetic field lines. Under oxic conditions, MTB in natural environments in the Northern Hemisphere generally display north-seeking (NS) polarity, swimming parallel to the Earth's magnetic field lines, while those in the Southern Hemisphere generally swim an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 92 2  شماره 

صفحات  -

تاریخ انتشار 2007